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xv

P R E F A C E

The subject of materials science and engineering is an essential course to 
engineers and scientists from all disciplines. With advances in science and 
technology, development of new engineering fields, and changes in the 

engineering profession, today’s engineer must have a deeper, more diverse, and 
up-to-date knowledge of materials-related issues. At a minimum, all engineering 
students must have the basic knowledge of the structure, properties, processing, and 
performance of various classes of engineering materials. This is a crucial first step in 
the materials selection decisions in everyday rudimentary engineering problems. A 
more in-depth understanding of the same topics is necessary for designers of complex 
systems, forensic (materials failure) analysts, and research and development engineers/
scientists.

Accordingly, to prepare materials engineers and scientists of the future, 
Foundations of Materials Science and Engineering is designed to present diverse top-
ics in the field with appropriate breadth and depth. The strength of the book is in its 
balanced presentation of concepts in science of materials (basic knowledge) and engi-
neering of materials (applied knowledge). The basic and applied concepts are inte-
grated through concise textual explanations, relevant and stimulating imagery, detailed 
sample problems, electronic supplements, and homework problems. This textbook is 
therefore suitable for both an introductory course in materials at the sophomore level 
and a more advanced (junior/senior level) second course in materials science and engi-
neering. Finally, the sixth edition and its supporting resources are designed to address 
a variety of student learning styles based on the well-known belief that not all students 
learn in the same manner and with the same tools.

The following improvements have been made to the sixth edition:

■ Chapter 1, Introduction to Materials Science and Engineering, has been updated 
to reflect the most recent available data on the use of various classes of materials 
in diverse industries. The use of materials in aerospace and automotive industries 
is discussed in detail. The historical competition among major classes of materi-
als has been discussed in more detail and updated.

■ All chapters have been reviewed for accuracy of content, images, and tables. 
New images representing more recent engineering applications have been 
included in all chapters. Diffusivity data in Chapter 5 has been updated. The 
mechanical property discussion in Chapter 6 has been expanded to include 
 modulus of resilience and toughness. The iron-carbon phase diagram in Chapter 9 
has been updated and improved. The concept of glass transition  temperature has 
been expanded upon in the discussion of polymers in Chapter 10. The classifi-
cation of composite materials in Chapter 12 has been expanded and improved. 
In Chapter 13, the sign convention in reporting the half-cell potentials has been 
made consistent with IUPAC conventions. The state of the art in microprocessor 
manufacturing, capability, and design has been updated.
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xvi Preface

■ The end-of-chapter problems have been classified according to the learning/ 
understanding level expected from the student by the instructor. The 
classification is based on Bloom’s Taxonomy and is intended to help students 
as well as instructors to set goals and standards for learning objectives. The first 
group in the classification is the Knowledge and Comprehension Problems. 
These problems will require students to show learning at the most basic level of 
recall of information and recognition of facts. Most problems ask the students 
to perform tasks such as define, describe, list, and name. The second group is 
the Application and Analysis Problems. In this group, students are required to 
apply the learned knowledge to the solution of a problem, demonstrate a concept, 
calculate, and analyze. Finally, the third class of problems is called Synthesis 
and Evaluation Problems. In this class of problems, the students are required 
to judge, evaluate, design, develop, estimate, assess, and in general synthesize 
new understanding based on what they have learned from the chapter. It is worth 
noting that this classification is not indicative of the level of difficulty, but 
simply different cognitive levels.

■ For most chapters, new problems—mostly in the synthesis and evaluation 
 category—have been developed. These problems are intended to make the 
students think in a more in-depth and reflective manner. This is an important 
objective of the authors to help instructors to train engineers and scientists who 
operate at a higher cognitive domain.

■ The instructors’ PowerPoint® lectures have been updated according to the 
changes made to various chapters. These detailed, yet succinct, PowerPoint 
 lectures are highly interactive and contain technical video clips, tutorials for 
problem solving, and virtual laboratory experiments. The PowerPoint lectures 
are designed to address a variety of learning styles including innovative,  analytic, 
common sense, and dynamic learners. Not only is this a great presentation tool 
for the instructor, it creates interest in the student to learn the subject more 
 effectively. We strongly recommend that the instructors for this course view and 
test these PowerPoint lecture presentations. This could be especially helpful for 
new instructors.

Additional resources available through the Instructor Resources are interactive 
quizzing, and step-by-step, real-life processes; animations; and a searchable materials 
properties database.
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A B O U T  T H E  C O V E R

A race car is an example of a complex mechanical system that utilizes a variety of 
materials from all five classes in its structure. For instance, for the race car in the 
image, the body is made of lightweight carbon fiber composites to save weight, the 
chassis is made of strong and tough steel alloys, the tires are made of durable volca-
nized rubber, key components in the engine and brake system are either made of or 
coated with ceramic materials to withstand high temperature, and a variety of sensors 
as well as the on-board computer system uses electronic materials. The design and 
selection of materials for the race car is based on many factors including safety, per-
formance, durability, and cost.
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2

1 C H A P T E R

Introduction to Materials 
Science and Engineering

(Source: Daniel Casper/NASA)(Source: NASA)

One of the most exciting proposed NASA missions is the human journey to Mars 
by the 2030s. The scientific questions that can be answered by actual human 

presence on Mars are too numerous and very exciting. A convoy of three NASA 
orbiters and two active rovers are already functioning on and around Mars to gather 
more information about the Red Planet in order to pave the way for future manned 
explorations. NASA engineers, together with U.S. aerospace companies such as 
Lockheed Martin, are putting together the Space Launch System (SLS) rocket that 
will take the Orion spacecraft on its manned Mars mission. Consider the technologies 
and the engineering knowledge needed to build the Orion spacecraft and complete 
such a mission. Following are some of the engineering and materials-related issues 
considered by NASA and Lockheed Martin in manufacturing the spacecraft.

Pressure testing: The Orion capsule, called the “birdcage,” has an underlying welded 
metallic structure that must contain the atmosphere for the crew during launch, space 
travel, reentry, and landing. The capsule will provide living space for the astronauts and 
must withstand the loads sustained during launch and landing. It is crucial that the struc-
ture be able to withstand the maximum internal pressurization needed for the journey. 
What metal would be suitable for the underlying structure? What properties should it have?

Tile bonding: During reentry, the Orion spacecraft will enter Earth’s atmosphere 
at speeds of 25,000 miles per hour and will be exposed to very high temperatures 
exceeding 5000°F. The “birdcage” of Orion, discussed above, cannot function at such 
high temperatures and requires a thermal protection system. NASA will use about 
1300 ceramic tiles to protect the capsule in addition to a heat shield. Why use ceramic 
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3

tiles? What properties do they possess that makes them attractive as a thermal protec-
tion system? What is the heat shield made of? What characteristics should it have?

Flight systems and subsystems: For Orion to function and communicate, it needs 
its avionics. This includes electrical power storage and distribution, thermal control 
systems, cabin pressure monitoring, communication command, data handling, guid-
ance, navigation and controls, propulsion, and computers. The slew of sensors and 
actuators needed for the these operations require the use of advanced electronics mate-
rials. What are the applications of electronics materials in space travel? Why are such 
materials crucial to the success of the mission?

Vibration tests: The Orion spacecraft will encounter vibrations due to interaction 
with Earth’s atmosphere. It is crucial that the spacecraft be able to withstand such vibra-
tions, and all systems, structural or electronic, must function under extreme conditions. 
NASA tested the Orion capsule using two electromagnetic shakers and exposed it to 
vibration frequencies ranging from 5 Mhz to 500 Mhz. What strategies for vibration 
dampening could be used? What materials would be beneficial for dampening vibration?

These are only some of the questions, tests, and considerations that NASA and 
Lockheed Martin engineers make in manufacturing of this complex system. Can you 
think of other issues that need be considered? What is the role of materials science and 
engineering in answering those questions? ■

1.1 MATERIALS AND ENGINEERING
Humankind, materials, and engineering have evolved over the passage of time and 
are continuing to do so. All of us live in a world of dynamic change, and materials 
are no exception. The advancement of civilization has historically depended on the 
improvement of materials to work with. Prehistoric humans were restricted to natu-
rally accessible materials such as stone, wood, bones, and fur. Over time, they moved 

L E A R N I N G  O B J E C T I V E S

 5. Evaluate how much you know and how much 
you do not know about materials.

 6. Establish the importance of materials science 
and engineering in the selection of materials for 
various applications.

By the end of this chapter, students will be able to
 1. Describe the subject of materials science and 

engineering as a scientific discipline.

 2. Cite the primary classification of materials.

 3. Give distinctive features and charactersitics of 
each group of materials.

 4. Name various material from each group. Give 
some applications of different types of materials.
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4 C H A P T E R  1  Introduction to Materials Science and Engineering

from the materials Stone Age into the newer Copper (Bronze) and Iron ages. Note 
that this advance did not take place uniformly everywhere—we shall see that this is 
true in nature even down to the microscopic scale. Even today we are restricted to the 
materials we can obtain from Earth’s crust and atmosphere (Table 1.1). According to 
Webster’s dictionary, materials may be defined as substances of which something is 
composed or made. Although this definition is broad, from an engineering application 
point of view, it covers almost all relevant situations.

The production and processing of materials into finished goods constitutes a large 
part of our present economy. Engineers design most manufactured products and the pro-
cessing systems required for their production. Since products require materials, engineers 
should be knowledgeable about the internal structure and properties of materials, as well 
as methods to manufacture components form those materials, so that they can choose 
the most suitable material for each application and develop the best processing methods.

Research and development engineers create new materials or modify the properties 
of existing ones. Design engineers use existing, modified, or new materials to design and 
create new products and systems. Sometimes design engineers have a problem in their 
design that requires a new material to be created by research scientists and engineers.

For example, NASA engineers designing the supersonic passenger planes 
(X-planes) (Fig. 1.1) will have to use high-temperature materials that withstand tem-
peratures in excess of 1800°C in the engine environment in order to achieve super-
sonic airspeeds as high as Mach 12 to 25 (12 to 25 times the speed of sound in air). 
In addition, these planes must meet the demands of today’s society by flying greener 
(less damaging to the environment and more renewable), safer, and quieter.

Another area that demands the most from materials scientists and engineers is 
space exploration. The design and construction of the International Space Station 

Element
Weight Percentage  

of the Earth’s Crust

Oxygen (O) 46.60
Silicon (Si) 27.72
Aluminum (Al)   8.13
Iron (Fe)   5.00
Calcium (Ca)   3.63
Sodium (Na)   2.83
Potassium (K)   2.70
Magnesium (Mg)   2.09
        Total 98.70
Gas Percent of Dry Air by Volume
Nitrogen (N2) 78.08
Oxygen (O2) 20.95
Argon (Ar)   0.93
Carbon dioxide (CO2)   0.03

Table 1.1  The most common elements in planet Earth’s crust and  
atmosphere by weight percentage and volume
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 1.1 Materials and Engineering 5

(ISS) and the Mars Exploration Rover (MER) missions are examples of space research 
and exploration activities that require the absolute best from our materials scientists 
and engineers. The construction of ISS, a large research laboratory moving at a speed 
of 27,000 km/h through space, required the selection of materials that would function 
in an environment far different than ours on Earth (Fig. 1.2). The materials had to be 
lightweight to minimize payload weight during liftoff. The outer shell had to protect 
against the impact of tiny meteoroids and human-made debris. The internal air pres-
sure of roughly 15 psi is constantly stressing the modules. Additionally, the modules 
must withstand the massive stresses at launch. Materials selection for MERs is also 
a challenge, especially considering that they must survive an environment in which 
night temperatures could be as low as −96°C. These and other constraints push the 
limits of material selection in the design of complex systems.

We must remember that materials usage and engineering designs are constantly 
changing. This change continues to accelerate. No one can accurately predict the long-
term advances in material design and usage. In 1943 the prediction was made that 
 successful people in the United States would own their own autogyros (auto-airplanes). 
How wrong that prediction was! At the same time, the transistor, the integrated circuit, and 
television (color and high-definition included) were neglected. Thirty years ago, many  

Figure 1.1
Nasa’s X-plane is in the preliminary design stage and is expected to be built based 
on Quiet Supersonic Technology (QueSST). The major goals for the new designs are 
to burn half the fuel, generate 75% less pollution, and be quieter than conventional 
jets even during supersonic flight.
(Source: NASA)
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6 C H A P T E R  1  Introduction to Materials Science and Engineering

people would not have believed that someday computers would become a common 
household item similar to a telephone or a refrigerator. And today, we still find it 
hard to believe that someday space travel will be commercialized, and we may even 
colonize Mars. Nevertheless, science and engineering push and transform our most 
unachievable dreams to reality.

The search for new advanced materials goes on continuously. The industries that 
benefit heavily from new advances in materials science and engineering and require a 
tremendous number of materials experts in their daily operations are aerospace, auto-
motive, biomaterials, chemical, electronics, energy, metals, and telecommunications. 
The focus on certain materials differs significantly between industries. For instance, 
in aerospace and automobile industries, the focus is mainly structural and is on air-
frame and engine materials. In biomaterials industries, the focus is on materials that 
are biocompatible (can survive in the human body) and also on synthesizing biological 
materials and components. In the chemical industries, the focus is on traditional chem-
icals, polymers, and advanced ceramics. In the electronics industries, material used in  
computers and commercial electronics takes center stage. In the energy industry, 
materials used in extraction of both fossil-based and renewable energy are the focus. 
Each industry also seeks different characteristics in their materials. These characteris-
tics and the needs in the respective industries are presented in Table 1.2.

Figure 1.2
The International Space Station.
(Source: NASA)
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More recently, the field of nanomaterials has attracted a great deal of attention 
from scientists and engineers all over the world. Novel structural, chemical, and 
mechanical properties of nanomaterials have opened new and exciting possibilities in 
the application of these materials to a variety of engineering and medical problems. 
These are only a few examples of the search by engineers and scientists for new and 
improved materials and processes for a multitude of applications. In many cases, what 
was impossible yesterday is a reality today!

Engineers in all disciplines should have some basic and applied knowledge of 
engineering materials so that they will be able to do their work more effectively when 
using them. The purpose of this book is to serve as an introduction to the internal 
structure, properties, processing, and applications of engineering materials. Because 
of the enormous amount of information available about engineering materials and due 
to the limitations of this book, the presentation has had to be selective.

1.2 MATERIALS SCIENCE AND ENGINEERING
Materials science is primarily concerned with the search for basic knowledge about 
the internal structure, properties, and processing of materials. Materials engineering 
is mainly concerned with the use of fundamental and applied knowledge of materials 
so that the materials can be converted into products needed or desired by society. The 
term materials science and engineering combines both materials science and materi-
als engineering and is the subject of this book. Materials science is at the basic knowl-
edge end of the materials knowledge spectrum, and materials engineering is at the 
applied knowledge end, and there is no demarcation line between the two (Fig. 1.3).

Industry

Desired 
Characteristics Aerospace Automotive Biomaterials Chemical Electrical Energy Metals Telecommunication

Light and strong ✓ ✓ ✓
High temperature  
 resistance

✓ ✓ ✓ ✓

Corrosion resistance ✓ ✓ ✓ ✓ ✓ ✓
Rapid switching ✓ ✓ ✓
Efficient processing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Near net shape  
 forming

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Recycling ✓ ✓ ✓
Prediction of  
 service life

✓ ✓ ✓ ✓ ✓ ✓ ✓

Prediction of   
 physical properties

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Materials data base ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.2 Use of advanced materials in selected industries and their desired characteristics.

Source: National Academy of Sciences.
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8 C H A P T E R  1  Introduction to Materials Science and Engineering

Figure 1.4 shows a three-ringed diagram that indicates the relationship among the 
basic sciences (and mathematics), materials science and engineering, and the other 
engineering disciplines. The basic sciences are located within the inner ring or core of 
the diagram, while the various engineering disciplines (mechanical, electrical, civil, 
chemical, etc.) are located in the outermost third ring. The applied sciences, metal-
lurgy, ceramics, and polymer science are located in the middle ring. Materials science 

Figure 1.3
Materials knowledge spectrum. Using the combined knowledge of 
 materials from materials science and materials engineering enables 
 engineers to convert materials into the products needed by society.
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Figure 1.4
This diagram illustrates how materials science and 
 engineering forms a bridge of knowledge from the  
basic sciences to the engineering disciplines.
(Source: National Academy of Sciences.)
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 1.3 Types of Materials 9

and engineering is shown to form a bridge of materials knowledge from the basic 
 sciences (and mathematics) to the engineering disciplines.

1.3 TYPES OF MATERIALS
For convenience most engineering materials are divided into three main or funda-
mental classes: metallic materials, polymeric materials, and ceramic materials.  
In this chapter we shall distinguish among them on the basis of some of their impor-
tant mechanical, electrical, and physical properties. In subsequent chapters, we shall 
study the internal structural differences among these types of materials. In addition 
to the three main classes of materials, we shall consider two processing or applica-
tional classes, composite materials and electronic materials, because of their great 
 engineering importance.

1.3.1 Metallic Materials

These materials are inorganic substances that are composed of one or more metallic 
elements and may also contain some nonmetallic elements. Examples of metallic ele-
ments are iron, copper, aluminum, nickel, and titanium. Nonmetallic elements such 
as carbon, nitrogen, and oxygen may also be contained in metallic materials. Metals 
have a crystalline structure in which the atoms are arranged in an orderly manner. 
Metals in general are good thermal and electrical conductors. Many metals are rela-
tively strong and ductile at room temperature, and many maintain good strength even 
at high temperatures.

Metals and alloys1 are commonly divided into two classes: ferrous metals and 
alloys that contain a large percentage of iron such as the steels and cast irons and 
 nonferrous metals and alloys that do not contain iron or contain only a relatively 
small amount of iron. Examples of nonferrous metals are aluminum, copper, zinc, 
titanium, and nickel. The distinction between ferrous and nonferrous alloys is made 
because of the significantly higher usage and production of steels and cast irons when 
compared to other alloys.

Metals in their alloyed and pure forms are used in many industries, including aero-
space, biomedical, semiconductor, electronic, energy, civil structural, and transport. 
The U.S. production of basic metals such as aluminum, copper, zinc, and  magnesium 
is expected to follow the U.S. economy fairly closely. For instance, in the United 
States alone, the primary metal product manufacturing industry distributed approxi-
mately $280 billion worth of products in 2014. The production of iron and steel (41% 
of the total primary metal distributed) has been steady considering global competition 
and the always-important economic reasons.

Materials scientists and engineers are constantly trying to improve the proper-
ties of existing alloys and to design and produce new alloys with improved strength, 
high-temperature strength, creep (see Sec. 7.4), and fatigue (see Sec. 7.2) properties. 
The existing alloys may be improved by better chemistry, composition control, and 

1 A metal alloy is a combination of two or more metals or a metal (metals) and a nonmetal (nonmetals).
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