Foundations of Materials Science and Engineering

WILLIAM SMITH | JAVAD HASHEMI

Foundations of Materials Science and Engineering

Sixth Edition

William F. Smith

Late Professor Emeritus of Engineering of University of Central Florida

Javad Hashemi, Ph.D.

Professor of Mechanical Engineering Florida Atlantic University

Dr. Francisco Presuel-Moreno

Associate Professor of Ocean and Mechanical Engineering Florida Atlantic University

FOUNDATIONS OF MATERIALS SCIENCE AND ENGINEERING, SIXTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2019 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions © 2010, 2006, and 2004. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 21 20 19 18

ISBN 978-1-259-69655-8 MHID 1-259-69655-3

Portfolio Manager: Thomas Scaife Ph.D. Product Developers: Tina Bower Marketing Manager: Shannon O'Donnell Content Project Managers: Jeni McAtee, Rachael Hillebrand Buyer: Laura Fuller Design: Egzon Shaqri Content Licensing Specialists: Lorraine Buczek Cover Image: Florida Atlantic University Compositor: SPi Global

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Smith, William F. (William Fortune), 1931- author. | Hashemi, Javad, 1961- author.
Title: Foundations of materials science and engineering / William F. Smith, late professor emeritus of engineering of University of Central Florida, Javad Hashemi, Ph.D., professor of mechanical engineering, Florida Atlantic University.
Description: Sixth edition. | New York, NY: McGraw-Hill Education, c2019. | Includes answers to chapter exercises. | Includes index.
Identifiers: LCCN 2017048596 | ISBN 9781259696558 (alk. paper)
Subjects: LCSH: Materials science. | Materials science—Textbooks. | Materials. | Materials—Textbooks.
Classification: LCC TA403 .S5955 2019 | DDC 620.1/1—dc23 LC record available at https://lccn.loc.gov/2017048596

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

Javad Hashemi is a Professor of Mechanical Engineering at Florida Atlantic University and is currently serving as the chairperson of the department. Javad received his Ph.D. in Mechanical Engineering from Drexel University in 1988. Prior to his tenure at Florida Atlantic University, Javad served as Professor of Mechanical Engineering and Associate Dean of Research for the College of Engineering at Texas Tech University. Over the course of his career, Dr. Hashemi has amassed extensive educational and research background in the areas of materials, mechanics, and biomechanics.

The late **William F. Smith** was Professor Emeritus of Engineering in the Mechanical and Aerospace Engineering Department of the University of Central Florida at Orlando, Florida. He was awarded an M.S. degree in metallurgical engineering from Purdue University and a Sc.D. degree in metallurgy from Massachusetts Institute of Technology. Dr. Smith, who was a registered professional engineer in the states of California and Florida, taught undergraduate and graduate materials science and engineering courses and actively wrote textbooks for many years. He was also the author of *Structure and Properties of Engineering Alloys*, Second Edition (McGraw-Hill, 1993).

Dr. Francisco Presuel-Moreno is an Associate Professor of Ocean and Mechanical Engineering at Florida Atlantic University and directs the Marine Materials and Corrosion Lab. **Dr. Presuel-Moreno** received his Ph.D. in Engineering Science from the University of South Florida. Prior to his tenure at Florida Atlantic University, **Dr. Presuel-Moreno** did a Postdoctoral stay at the Materials Science and Engineering department at the University of Virginia. Over the course of his career, **Dr. Presuel-Moreno** has accumulated extensive educational and research background, including marine materials, metallic corrosion in concrete, durability of reinforced concrete structures, non-destructive testing and experimental and computational modeling of corrosion processes.

TABLE OF CONTENTS

Preface xv

1.1

CHAPTER **1** Introduction to Materials Science and Engineering 2

Materials and Engineering 3

1.2	Materials Science and Engineering 7
1.3	Types of Materials 9
	1.3.1 Metallic Materials 9
	1.3.2 Polymeric Materials 11
	1.3.3 Ceramic Materials 14
	1.3.4 Composite Materials 16
	1.3.5 Electronic Materials 18
1.4	Competition Among Materials 19
1.5	Recent Advances in Materials Science and Technology and Future Trends 21
	1.5.1 Smart Materials 21
	1.5.2 Nanomaterials 23
1.6	Design and Selection 24
1.7	Summary 26
1.8	Definitions 26
1.9	Problems 27

CHAPTER 2

Atomic Structure and Bonding 30

- 2.1 Atomic Structure and Subatomic Particles 31
- **2.2** Atomic Numbers, Mass Numbers, and Atomic Masses 35
 - 2.2.1 Atomic Numbers and Mass Numbers 35
- **2.3** The Electronic Structure of Atoms 39
 - **2.3.1** Planck's Quantum Theory and Electromagnetic Radiation 39
 - **2.3.2** Bohr's Theory of the Hydrogen Atom 40
 - **2.3.3** The Uncertainty Principle and Schrödinger's Wave Functions 44

- **2.3.4** *Quantum Numbers, Energy Levels, and Atomic Orbitals* 47
- **2.3.5** The Energy State of Multielectron Atoms 50
- **2.3.6** The Quantum-Mechanical Model and the Periodic Table 52
- 2.4 Periodic Variations in Atomic Size, Ionization Energy, and Electron Affinity 55
 2.4.1 Trends in Atomic Size 55
 2.4.2 Trends in Ionization Energy 56
 2.4.3 Trends in Electron Affinity 58
 - **2.4.4** *Metals, Metalloids, and Nonmetals* 60
- **2.5** Primary Bonds 60
 - **2.5.1** *Ionic Bonds* 62
 - **2.5.2** Covalent Bonds 68
 - **2.5.3** *Metallic Bonds* 75
 - **2.5.4** Mixed Bonding 77
- **2.6** Secondary Bonds 79
- **2.7** Summary 82
- **2.8** Definitions 82
- 2.9 Problems 84

CHAPTER **3** Crystal and Amorphous Structure in Materials 92

- **3.1** The Space Lattice and Unit Cells 93
- 3.2 Crystal Systems and Bravais Lattices 94
- **3.3** Principal Metallic Crystal Structures 95
 - **3.3.1** Body-Centered Cubic (BCC) Crystal Structure 97
 - **3.3.2** Face-Centered Cubic (FCC) Crystal Structure 100
 - **3.3.3** Hexagonal Close-Packed (HCP) Crystal Structure 101
- **3.4** Atom Positions in Cubic Unit Cells 104
- **3.5** Directions in Cubic Unit Cells 105

- 3.6 Miller Indices for Crystallographic Planes in Cubic Unit Cells 109 3.7 Crystallographic Planes and Directions in Hexagonal Crystal Structure 114 3.7.1 Indices for Crystal Planes in HCP Unit Cells 114 **3.7.2** Direction Indices in HCP Unit Cells 116 3.8 Comparison of FCC, HCP, and BCC Crystal Structures 116 **3.8.1** FCC and HCP Crystal Structures 116 3.8.2 BCC Crystal Structure 119 3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 119 3.9.1 Volume Density 119 **3.9.2** Planar Atomic Density 120 3.9.3 Linear Atomic Density and Repeat Distance 122 3.10 Polymorphism or Allotropy 123 3.11 Crystal Structure Analysis 124 **3.11.1** X-Ray Sources 125 3.11.2 X-Ray Diffraction 126 3.11.3 X-Ray Diffraction Analysis of Crystal Structures 128 3.12 Amorphous Materials 134 3.13 Summary 135
- 3.14 Definitions 136
- **3.15** Problems 137

CHAPTER 4

Solidification and Crystalline Imperfections 146

- 4.1 Solidification of Metals 147
 - **4.1.1** The Formation of Stable Nuclei in Liquid Metals 149
 - **4.1.2** Growth of Crystals in Liquid Metal and Formation of a Grain Structure 154
 - **4.1.3** Grain Structure of Industrial Castings 155
- **4.2** Solidification of Single Crystals 156
- 4.3 Metallic Solid Solutions 160
 4.3.1 Substitutional Solid Solutions 161
 4.3.2 Interstitial Solid Solutions 163

- 4.4 Crystalline Imperfections 165
 4.4.1 Point Defects 165
 4.4.2 Line Defects (Dislocations) 166
 4.4.3 Planar Defects 170
 4.4.4 Volume Defects 172
 4.5 Experimental Techniques for Identification of Microstructure and Defects 173
 4.5.1 Optical Metallography, ASTM Grain Size, and Grain Diameter Determination 173
 - 4.5.2 Scanning Electron Microscopy (SEM) 178
 - **4.5.3** Transmission Electron Microscopy (TEM) 179
 - **4.5.4** High-Resolution Transmission Electron Microscopy (HRTEM) 180
 - **4.5.5** Scanning Probe Microscopes and Atomic Resolution 182
- **4.6** Summary 186
- 4.7 Definitions 187
- **4.8** Problems 188

CHAPTER 5

Thermally Activated Processes and Diffusion in Solids 196

- **5.1** Rate Processes in Solids 197
- 5.2 Atomic Diffusion in Solids 201
 5.2.1 Diffusion in Solids in General 201
 5.2.2 Diffusion Mechanisms 201

5.2.3 Steady-State Diffusion 203

- 5.2.4 Non–Steady-State Diffusion 206
- **5.3** Industrial Applications of Diffusion Processes 208
 - **5.3.1** Case Hardening of Steel by Gas Carburizing 208
 - **5.3.2** Impurity Diffusion into Silicon Wafers for Integrated Circuits 212
- 5.4 Effect of Temperature on Diffusion in Solids 215
- 5.5 Summary 218
- 5.6 Definitions 219
- **5.7** Problems 219

СНАРТЕК	6
Mechanical	Properties
of Metals I	224

			N
6.1	The Processing of Metals and Alloys 225	6.8	F
	6.1.1 The Casting of Metals and Alloys 225		F
	6.1.2 Hot and Cold Rolling of Metals and Alloys 227		6
	6.1.3 Extrusion of Metals and Alloys 231		6
	6.1.4 Forging 232		6
	6.1.5 Other Metal-Forming Processes 234	6.9	S
6.2	Stress and Strain in Metals 235	6.10	N
	6.2.1 Elastic and Plastic Deformation 236	6.11	S
	6.2.2 Engineering Stress and Engineering	6.12	Г
	Strain 236	6.13	F
	6.2.3 Poisson's Ratio 239	0110	1
	6.2.4 Shear Stress and Shear Strain 240	СНА	νP
6.3	The Tensile Test and The Engineering	Mech	ıar
	Stress-Strain Diagram 241	of M	eta
	6.3.1 Mechanical Property Data Obtained		_
	Stress-Strain Diagram 243	7.1	ŀ
	6.3.2 Comparison of Engineering Stress-Strain		7
	Curves for Selected Alloys 249		7
	6.3.3 True Stress and True Strain 249		7
6.4	Hardness and Hardness Testing 251		7
6.5	Plastic Deformation of Metal Single		-
	Crystals 253	7.2	/ T
	6.5.1 Slipbands and Slip Lines on the Surface of	7.2	r T
	Metal Crystals 253		7
	6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 256		7
	6.5.3 Slip Systems 256		-
	6.5.4 Critical Resolved Shear Stress for Metal Single Crystals 261		/
	6.5.5 Schmid's Law 261	7.3	F
	6.5.6 <i>Twinning</i> 264		7
6.6	Plastic Deformation of Polycrystalline		
	Metals 265		7
	6.6.1 Effect of Grain Boundaries on the Strength		,
	of Metals 265		7
	6.6.2 Effect of Plastic Deformation on	7.4	(
	Grain Snape and Dislocation Arrangements 267		7

	6.6.3 Effect of Cold Plastic Deformation on Increasing the Strength of Metals 270
6.7	Solid-Solution Strengthening of
	Metals 271
6.8	Recovery and Recrystallization of Plastically Deformed Metals 272
	6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating 273
	6.8.2 <i>Recovery</i> 273

- **6.8.3** Recrystallization 275
- 5.9 Superplasticity in Metals 279
- 6.10 Nanocrystalline Metals 281
- 6.11 Summary 282
- 6.12 Definitions 283
- 6.13 Problems 285

CHAPTER 7

Mechanical Properties of Metals II 294

l	Fracture of Metals 295
	7.1.1 Ductile Fracture 296
	7.1.2 Brittle Fracture 297
	7.1.3 Toughness and Impact Testing 300
	7.1.4 Ductile-to-Brittle Transition Temperature 302
	7.1.5 Fracture Toughness 303
2	Fatigue of Metals 305
	7.2.1 Cyclic Stresses 309
	7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the Fatigue Process 310
	7.2.3 Some Major Factors that Affect the Fatigue Strength of a Metal 311
3	Fatigue Crack Propagation Rate 312
	7.3.1 Correlation of Fatigue Crack Propagation with Stress and Crack Length 312
	7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 314
	7.3.3 Fatigue Life Calculations 316
1	Creep and Stress Rupture of Metals 318
	7.4.1 Creep of Metals 318

7.4.2 The Creep Test
 320

 7.4.3 Creep-Rupture Test
 321

- 7.5 Graphical Representation of Creep- and Stress-Rupture Time-Temperature Data Using the Larsen-Miller Parameter 322
- 7.6 A Case Study In Failure of Metallic Components 324
- 7.7 Recent Advances and Future Directions in Improving The Mechanical Performance of Metals 327
 - 7.7.1 Improving Ductility and Strength Simultaneously 327
 - **7.7.2** Fatigue Behavior in Nanocrystalline Metals 329
- 7.8 Summary 329
- 7.9 Definitions 330
- **7.10** Problems 331

CHAPTER 8

Phase Diagrams 336

- 8.1 Phase Diagrams of Pure Substances 337
- **8.2** Gibbs Phase Rule 339
- **8.3** Cooling Curves 340
- 8.4 Binary Isomorphous Alloy Systems 342
- 8.5 The Lever Rule 344
- **8.6** Nonequilibrium Solidification of Alloys 348
- 8.7 Binary Eutectic Alloy Systems 351
- **8.8** Binary Peritectic Alloy Systems 359
- **8.9** Binary Monotectic Systems 364
- 8.10 Invariant Reactions 365
- **8.11** Phase Diagrams with Intermediate Phases and Compounds 367
- 8.12 Ternary Phase Diagrams 371
- 8.13 Summary 374
- 8.14 Definitions 375
- 8.15 Problems 377

CHAPTER 9

Engineering Alloys 388

9.1	Production of Iron and Steel 389
	9.1.1 Production of Pig Iron in a Blast Furnace 390
	9.1.2 Steelmaking and Processing of Major Steel Product Forms 391
9.2	The Iron-Carbon System 393
	9.2.1 The Iron–Iron-Carbide Phase Diagram 393
	9.2.2 Solid Phases in the Fe–Fe ₃ C Phase Diagram 393
	9.2.3 Invariant Reactions in the Fe–Fe ₃ C Phase Diagram 394
	9.2.4 Slow Cooling of Plain-Carbon Steels 396
9.3	Heat Treatment of Plain-Carbon Steels 403
	9.3.1 Martensite 403
	9.3.2 Isothermal Decomposition of Austenite 408
	9.3.3 Continuous-Cooling Transformation Diagram for a Eutectoid Plain-Carbon Steel 413
	9.3.4 Annealing and Normalizing of Plain- Carbon Steels 415
	9.3.5 <i>Tempering of Plain-Carbon Steels</i> 417
	9.3.6 Classification of Plain-Carbon Steels and Typical Mechanical Properties 421
9.4	Low-Alloy Steels 423
	9.4.1 Classification of Alloy Steels 423
	9.4.2 Distribution of Alloying Elements in Alloy Steels 423
	9.4.3 Effects of Alloying Elements on the Eutectoid Temperature of Steels 424
	9.4.4 Hardenability 426
	9.4.5 <i>Typical Mechanical Properties and</i> <i>Applications for Low-Alloy Steels</i> 430
9.5	Aluminum Alloys 432
	9.5.1 Precipitation Strengthening (Hardening) 432

	9.5.2 General Properties of Aluminum and Its Production 438
	9.5.3 Wrought Aluminum Alloys 440
	9.5.4 Aluminum Casting Alloys 444
9.6	Copper Alloys 446
	9.6.1 General Properties of Copper 446
	9.6.2 <i>Production of Copper</i> 446
	9.6.3 Classification of Copper Alloys 446
	9.6.4 Wrought Copper Alloys 447
9.7	Stainless Steels 452
	9.7.1 Ferritic Stainless Steels 452
	9.7.2 Martensitic Stainless Steels 453
	9.7.3 Austenitic Stainless Steels 455
9.8	Cast Irons 457
	9.8.1 General Properties 457
	9.8.2 <i>Types of Cast Irons</i> 457
	9.8.3 White Cast Iron 459
	9.8.4 Gray Cast Iron 459
	9.8.5 Ductile Cast Irons 460
0.0	9.8.6 Malleable Cast Irons 462
9.9	Alloys 464
	9.9.1 Magnesium Alloys 464
	9.9.2 <i>Titanium Alloys</i> 466
	9.9.3 Nickel Alloys 468
9.10	Special-Purpose Alloys and Applications 468
	9.10.1 Intermetallics 468
	9.10.2 Shape-Memory Alloys 470
	9.10.3 Amorphous Metals 474
9.11	Summary 475
9.12	Definitions 476
9.13	Problems 478
СНА	PTER 10
Polymeric Materials 488	
10.1	Introduction 489
	10.1.1 Thermoplastics 490
	10.1.2 Thermosetting Plastics (Thermosets) 490
10.3	

10.2 Polymerization Reactions 491
10.2.1 Covalent Bonding Structure of an Ethylene Molecule 491

	10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule 492
	10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree of Polymerization 493
	10.2.4 Chain Polymerization Steps 493
	10.2.5 Average Molecular Weight for Thermoplastics 495
	10.2.6 Functionality of a Monomer 496
	10.2.7 Structure of Noncrystalline Linear Polymers 496
	10.2.8 Vinyl and Vinylidene Polymers 498
	10.2.9 Homopolymers and Copolymers 499
	10.2.10 Other Methods of Polymerization 502
10.3	Industrial Polymerization Methods 504
10.4	Glass Transition Temperature and
	Crystallinity in Thermoplastics 506
	10.4.1 <i>Glass Transition Temperature</i> 506
	10.4.2 Solidification of Noncrystalline Thermoplastics 506
	10.4.3 Solidification of Partly Crystalline Thermoplastics 507
	10.4.4 Structure of Partly Crystalline Thermoplastic Materials 508
	10.4.5 Stereoisomerism in Thermoplastics 510
	10.4.6 Ziegler and Natta Catalysts 510
10.5	Processing of Plastic Materials 512
	10.5.1 Processes Used for Thermoplastic Materials 512
	10.5.2 Processes Used for Thermosetting Materials 516
10.6	General-Purpose Thermoplastics 518
	10.6.1 Polyethylene 520
	10.6.2 <i>Polyvinyl Chloride and</i> <i>Copolymers</i> 523
	10.6.3 <i>Polypropylene</i> 525
	10.6.4 <i>Polystyrene</i> 525
	10.6.5 <i>Polyacrylonitrile</i> 526
	10.6.6 Styrene–Acrylonitrile (SAN) 527
	10.6.7 ABS 527
	10.6.8 Polymethyl Methacrylate (PMMA) 529
	10.6.9 Fluoroplastics 530

10.7 Engineering Thermoplastics 531 **10.7.1** Polyamides (Nylons) 532 **10.7.2** Polycarbonate 535 **10.7.3** Phenylene Oxide–Based Resins 536 **10.7.4** Acetals 537 **10.7.5** Thermoplastic Polyesters 538 **10.7.6** Polyphenylene Sulfide 539 10.7.7 Polyetherimide 540 10.7.8 Polymer Alloys 540 10.8 Thermosetting Plastics (Thermosets) 541 **10.8.1** *Phenolics* 543 **10.8.2** Epoxy Resins 544 10.8.3 Unsaturated Polyesters 546 10.8.4 Amino Resins (Ureas and Melamines) 547 10.9 Elastomers (Rubbers) 549 **10.9.1** Natural Rubber 549 10.9.2 Synthetic Rubbers 553 **10.9.3** Properties of Polychloroprene Elastomers 554 **10.9.4** Vulcanization of Polychloroprene Elastomers 555 **10.10** Deformation and Strengthening of Plastic Materials 557 10.10.1 Deformation Mechanisms for Thermoplastics 557 **10.10.2** Strengthening of Thermoplastics 559 **10.10.3** *Strengthening of Thermosetting* Plastics 562 **10.10.4** Effect of Temperature on the Strength of Plastic Materials 563 **10.11** Creep and Fracture of Polymeric Materials 564 **10.11.1** Creep of Polymeric Materials 564 **10.11.2** Stress Relaxation of Polymeric Materials 566 10.11.3 Fracture of Polymeric Materials 567 10.12 Summary 570 10.13 Definitions 571 **10.14** Problems 574

CHAPTER 11

Ceramics 584

- 11.1 Introduction 585
- **11.2** Simple Ceramic Crystal Structures 587
 - **11.2.1** Ionic and Covalent Bonding in Simple Ceramic Compounds 587
 - **11.2.2** Simple Ionic Arrangements Found in Ionically Bonded Solids 588
 - **11.2.3** Cesium Chloride (CsCl) Crystal Structure 591
 - **11.2.4** Sodium Chloride (NaCl) Crystal Structure 592
 - **11.2.5** Interstitial Sites in FCC and HCP Crystal Lattices 596
 - 11.2.6 Zinc Blende (ZnS) Crystal Structure 598
 - **11.2.7** *Calcium Fluoride* (*CaF*₂) *Crystal Structure* 600
 - **11.2.8** Antifluorite Crystal Structure 602
 - **11.2.9** Corundum (Al_2O_3) Crystal Structure 602
 - **11.2.10** Spinel (MgAl₂O₄) Crystal Structure 602
 - **11.2.11** *Perovskite* (*CaTiO*₃) *Crystal Structure* 603
 - **11.2.12** Carbon and Its Allotropes 603
- **11.3** Silicate Structures 607
 - **11.3.1** Basic Structural Unit of the Silicate Structures 607
 - **11.3.2** Island, Chain, and Ring Structures of Silicates 607
 - **11.3.3** Sheet Structures of Silicates 607
 - **11.3.4** Silicate Networks 608
- 11.4 Processing of Ceramics 610
 11.4.1 Materials Preparation 611
 11.4.2 Forming 611
 11.4.3 Thermal Treatments 615
- 11.5Traditional and Structural Ceramics61811.5.1Traditional Ceramics61811.5.2Structural Ceramics620
- **11.6**Mechanical Properties of Ceramics622**11.6.1**General622
 - **11.6.2** *Mechanisms for the Deformation of Ceramic Materials* 622

	11.6.3 Factors Affecting the Strength of Ceramic Materials 624	
	1164 Toughness of Ceramic Materials 624	
	11.6.5 Transformation Toughening of Partially	
	Stabilized Zirconia (PSZ) 626	
	11.6.6 <i>Fatigue Failure of Ceramics</i> 628	
	11.6.7 <i>Ceramic Abrasive Materials</i> 628	
11.7	Thermal Properties of Ceramics 629	12
	11.7.1 <i>Ceramic Refractory Materials</i> 629	12.
	11.7.2 Acidic Refractories 630	14.
	11.7.3 Basic Refractories 631	
	11.7.4 Ceramic Tile Insulation for the Space Shuttle Orbiter 631	
11.8	Glasses 633	
	11.8.1 Definition of a Glass 633	12.
	11.8.2 Glass Transition Temperature 633	
	11.8.3 Structure of Glasses 633	
	11.8.4 Compositions of Glasses 636	
	11.8.5 Viscous Deformation of Glasses 636	
	11.8.6 Forming Methods for Glasses 640	12.
	11.8.7 Tempered Glass 641	
	11.8.8 Chemically Strengthened Glass 642	
11.9	Ceramic Coatings and Surface Engineering 643	
	11.9.1 Silicate Glasses 643	
	11.9.2 Oxides and Carbides 643	12.
11.10	Nanotechnology and Ceramics 644	
11.11	Summary 646	
11.12	Definitions 647	
11.13	Problems 648	
СНА	PTER 12	
Comp	osite Materials 656	12.
12.1	Introduction 657	
	12.1.1 <i>Classification of Composite Materials</i> 657	
	12.1.2 Advantages and Disadvantages of	
	Composite Materials over	
12.2	Conventional Materials 030	
12.2	Materials 659	
	12.2.1 Glass Fibers for Reinforcing Plastic	
	<i>J</i>	

Resins 659

	12.2.2 Carbon Fibers for Reinforced Plastics 662
	12.2.3 Aramid Fibers for Reinforcing Plastic Resins 664
	12.2.4 Comparison of Mechanical Properties of Carbon, Aramid, and Glass Fibers for Reinforced-Plastic Composite Materials 664
12.3	Matrix Materials for Composites 666
12.4	Fiber-Reinforced Plastic Composite Materials 667
	12.4.1 Fiberelass-Reinforced Plastics 667
	12.4.2 Carbon Fiber–Reinforced Epoxy Resins 668
12.5	Equations for Elastic Modulus of Composite Laminates: Isostrain and Isostress Conditions 670
	12.5.1 Isostrain Conditions 670
	12.5.2 Isostress Conditions 673
12.6	Open-Mold Processes for Fiber-Reinforced Plastic Composite Materials 675
	12.6.1 Hand Lay-Up Process 675
	12.6.2 Spray Lay-Up Process 676
	12.6.3 Vacuum Bag–Autoclave Process 677
	12.6.4 Filament-Winding Process 678
12.7	Closed-Mold Processes for Fiber-Reinforced Plastic Composite Materials 678
	12.7.1 Compression and Injection Molding 678
	12.7.2 The Sheet-Molding Compound (SMC) Process 679
	12.7.3 Continuous-Pultrusion Process 680
12.8	Concrete 680
	12.8.1 Portland Cement 681
	12.8.2 <i>Mixing Water for Concrete</i> 684
	12.8.3 Aggregates for Concrete 685
	12.8.4 Air Entrainment 685
	12.8.5 <i>Compressive Strength of Concrete</i> 686
	12.8.6 <i>Proportioning of Concrete Mixtures</i> 686
	12.8.7 <i>Reinforced and Prestressed Concrete</i> 687
	12.8.8 Prestressed Concrete 688

12.9 Asphalt and Asphalt Mixes 690

12.10	Wood 692
	12.10.1 Macrostructure of Wood 692
	12.10.2 <i>Microstructure of Softwoods</i> 695
	12.10.3 <i>Microstructure of Hardwoods</i> 696
	12.10.4 Cell-Wall Ultrastructure 697
	12.10.5 Properties of Wood 699
12.11	Sandwich Structures 700
	12.11.1 Honeycomb Sandwich Structure 702
	12.11.2 Cladded Metal Structures 702
12.12	Metal-Matrix and Ceramic-Matrix
	Composites 703
	12.12.1 Metal-Matrix Composites
	(MMCs) 703
	12.12.2 Ceramic-Matrix Composites
	(CMCs) 705
	12.12.3 Ceramic Composites and
	Nanotechnology 710
12.13	Summary 710
12.14	Definitions 711
12.15	Problems 714

CHAPTER 13

Corrosion 720

- **13.1** Corrosion and Its Economical Impact 721
- 13.2 Electrochemical Corrosion of Metals 722
 13.2.1 Oxidation-Reduction Reactions 723
 13.2.2 Standard Electrode Half-Cell Potentials for Metals 724
 13.3 Galvanic Cells 726
 - **13.3.1** Macroscopic Galvanic Cells with Electrolytes That Are One Molar 726
 - **13.3.2** Galvanic Cells with Electrolytes That Are Not One Molar 728
 - **13.3.3** Galvanic Cells with Acid or Alkaline Electrolytes with No Metal Ions Present 730
 - **13.3.4** Microscopic Galvanic Cell Corrosion of Single Electrodes 731
 - 13.3.5 Concentration Galvanic Cells 733
 - **13.3.6** Galvanic Cells Created by Differences in Composition, Structure, and Stress 736

13.4	Corrosion Rates (Kinetics) 738
	13.4.1 Rate of Uniform Corrosion or Electroplating of a Metal in an Aqueous Solution 738
	13.4.2 Corrosion Reactions and Polarization 741
	13.4.3 Passivation 745
	13.4.4 The Galvanic Series 745
13.5	Types of Corrosion 746
	13.5.1 Uniform or General Attack Corrosion 746
	13.5.2 Galvanic or Two-Metal Corrosion 748
	13.5.3 Pitting Corrosion 749
	13.5.4 Crevice Corrosion 751
	13.5.5 Intergranular Corrosion 753
	13.5.6 Stress Corrosion 755
	13.5.7 Erosion Corrosion 758
	13.5.8 Cavitation Damage 759
	13.5.9 Fretting Corrosion 759
	13.5.10 Selective Leaching 759
	13.5.11 Hydrogen Damage 760
13.6	Oxidation of Metals 761
	13.6.1 Protective Oxide Films 761
	13.6.2 Mechanisms of Oxidation 763
	13.6.3 Oxidation Rates (Kinetics) 764
13.7	Corrosion Control 766
	13.7.1 Materials Selection 766
	13.7.2 Coatings 767
	13.7.3 Design 768
	13.7.4 Alteration of Environment 769
	13.7.5 Cathodic and Anodic Protection 770
13.8	Summary 771
13.9	Definitions 772

13.10 Problems 773

CHAPTER 14

Electrical Properties of Materials 780

14.1 Electrical Conduction In Metals 781
14.1.1 The Classic Model for Electrical Conduction in Metals 781

14.1.2 Ohm's Law 783	14.6	Microelectronics 818
14.1.3 Drift Velocity of Electrons in a Conducting Metal 787		14.6.1 Microelectronic Planar Bipolar Transistors 818
14.1.4 <i>Electrical Resistivity of Metals</i> 788 Energy-Band Model for Electrical		14.6.2 <i>Microelectronic Planar Field-Effect</i> <i>Transistors</i> 819
Conduction 792		14.6.3 Fabrication of Microelectronic Integrated Circuits 822
14.2.1 Energy-Bana Model for Metals 792	14.7	Compound Semiconductors 829
14.2.2 Energy-Bana Model for Insulators 794	14.8	Electrical Properties of Ceramics 832
Intrinsic Semiconductors 794	14.0	14.8.1 Basic Properties of Dielectrics 832
14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 794		14.8.2 Ceramic Insulator Materials834
14.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 795		14.8.3 Ceramic Materials for Capacitors 8 14.8.4 Ceramic Semiconductors 836
14.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 796	44.0	14.8.5 Ferroelectric Ceramics 838
14.3.4 <i>Quantitative Relationships for Electrical</i>	14.9	Nanoelectronics 841
Conduction in Elemental Intrinsic	14.10	Summary 842
Semiconductors 797	14.11	Definitions 843
14.3.5 Effect of Temperature on Intrinsic Semiconductivity 799	14.12	Problems 845
Extrinsic Semiconductors 801	СНА	PTER 15
14.4.1 n-Type (Negative-Type) Extrinsic	Optic	al Properties and Superconductive
Semiconductors 801	Mate	rials 850
14.4.2 <i>p-Type (Positive-Type) Extrinsic</i> Semiconductors 803	15.1	Introduction 851
14.4.3 Doping of Extrinsic Silicon Semiconductor Material 805	15.2 15.3	Light and the Electromagnetic Spectrum Refraction of Light 853
14.4.4 Effect of Doping on Carrier	15.5	15.3.1 Index of Refraction 853
Concentrations in Extrinsic		15.3.2 Snell's Law of Light Refraction 855
Semiconductors 805	15 4	Absorption Transmission and Reflection
14.4.5 Effect of Total Ionized Impurity	10.4	Light 856
Concentration on the Mobility of Charge Carriers in Silicon at Room		15.4.1 Metals 856
Temperature 808		15.4.2 Silicate Glasses 857
14.4.6 Effect of Temperature on the		15.4.3 <i>Plastics</i> 858
Electrical Conductivity of Extrinsic		15.4.4 Semiconductors 860
Semiconductors 809	15.5	Luminescence 861
Semiconductor Devices 811		15.5.1 <i>Photoluminescence</i> 862
14.5.1 <i>The pn Junction</i> 812		15.5.2 <i>Cathodoluminescence</i> 862
14.5.2 Some Applications for pn Junction Diodes 815	15.6	Stimulated Emission of Radiation and
	 14.1.2 Ohm's Law 783 14.1.3 Drift Velocity of Electrons in a Conducting Metal 787 14.1.4 Electrical Resistivity of Metals 788 Energy-Band Model for Electrical Conduction 792 14.2.1 Energy-Band Model for Metals 792 14.2.2 Energy-Band Model for Insulators 794 14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 794 14.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 795 14.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 796 14.3.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 797 14.3.5 Effect of Temperature on Intrinsic Semiconductors 801 14.4.1 n-Type (Negative-Type) Extrinsic Semiconductors 803 14.4.3 Doping of Extrinsic Silicon Semiconductor Material 805 14.4.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 805 14.4.5 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 808 14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 805 14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 805 14.4.6 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 808 14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 809 Semiconductor Devices 811 14.5.1 The mn Junction 812 	 14.1.2 Ohm's Law 783 14.6 14.1.3 Drift Velocity of Electrons in a Conducting Metal 787 14.1.4 Electrical Resistivity of Metals 788 Energy-Band Model for Electrical Conduction 792 14.2.1 Energy-Band Model for Metals 792 14.2.2 Energy-Band Model for Insulators 794 14.7 Intrinsic Semiconductors 794 14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 794 14.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 795 14.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 796 14.3.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 797 14.3.5 Effect of Temperature on Intrinsic Semiconductors 801 14.4.1 n-Type (Negative-Type) Extrinsic Semiconductors 803 15.1 14.4.3 Doping of Extrinsic Silicon Semiconductors 803 14.4.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 805 14.4.5 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 808 14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 809 15.5 Semiconductor So9 15.4

	14.6	Microelectronics 818
		14.6.1 Microelectronic Planar Bipolar Transistors 818
		14.6.2 Microelectronic Planar Field-Effect Transistors 819
		14.6.3 Fabrication of Microelectronic Integrated Circuits 822
1	14.7	Compound Semiconductors 829
	14.8	Electrical Properties of Ceramics 832
n		14.8.1 Basic Properties of Dielectrics 832
		14.8.2 Ceramic Insulator Materials 834
		14.8.3 Ceramic Materials for Capacitors 835
		14.8.4 Ceramic Semiconductors 836
		14.8.5 Ferroelectric Ceramics 838
_	14.9	Nanoelectronics 841
l	14.10	Summary 842

Light and the Electromagnetic Spectrum 851

15.3.2 Snell's Law of Light Refraction 855 Absorption, Transmission, and Reflection of

xii

15.7	Optical Fibers 868
	15.7.1 Light Loss in Optical Fibers 868
	15.7.2 Single-Mode and Multimode Optical Fibers 869
	15.7.3 Fabrication of Optical Fibers 870
	15.7.4 Modern Optical-Fiber Communication Systems 872
15.8	Superconducting Materials 873
	15.8.1 The Superconducting State 873
	15.8.2 Magnetic Properties of Superconductors 874
	15.8.3 Current Flow and Magnetic Fields in Superconductors 876
	15.8.4 High-Current, High-Field Superconductors 877
	15.8.5 <i>High Critical Temperature</i> (<i>T_c</i>) <i>Superconducting Oxides</i> 879
15.9	Definitions 881
15.10	Problems 882

CHAPTER 16

Magnetic Properties 886

16.1	Introduction 887						
16.2	Magnetic Fields and Quantities 887						
	16.2.1 Magnetic Fields 887						
	16.2.2 Magnetic Induction 889						
	16.2.3 Magnetic Permeability 890						
	16.2.4 Magnetic Susceptibility 891						
16.3	Types of Magnetism 892						
	16.3.1 Diamagnetism 892						
	16.3.2 Paramagnetism 892						
	16.3.3 Ferromagnetism 893						
	16.3.4 Magnetic Moment of a Single Unpaired Atomic Electron 895						
	16.3.5 Antiferromagnetism 897						
	16.3.6 Ferrimagnetism 897						
16.4	Effect of Temperature on Ferromagnetism 897						

16.5 Ferromagnetic Domains 898

16.6	Types of Energies that Determine the
	Structure of Ferromagnetic Domains 899
	16.6.1 Exchange Energy 900
	16.6.2 Magnetostatic Energy 900
	16.6.3 Magnetocrystalline Anisotropy
	Energy 901
	16.6.4 <i>Domain Wall Energy</i> 902
	16.6.5 <i>Magnetostrictive Energy</i> 903
16.7	The Magnetization and Demagnetization of
	a Ferromagnetic Metal 905
16.8	Soft Magnetic Materials 906
	16.8.1 Desirable Properties for Soft Magnetic
	Materials 906
	16.8.2 Energy Losses for Soft Magnetic
	Materials 906
	16.8.3 Iron–Silicon Alloys 907
	16.8.4 <i>Metallic Glasses</i> 909
160	16.8.5 Nickel–Iron Alloys 911
16.9	Hard Magnetic Materials 912
	16.9.1 Properties of Hard Magnetic Materials 912
	16.9.2 Alnico Alloys 915
	16.9.3 Rare Earth Alloys 917
	16.9.4 Neodymium–Iron–Boron Magnetic
	Alloys 917
	16.9.5 Iron–Chromium–Cobalt Magnetic Alloys 918
16.10	Ferrites 921
	16.10.1 Magnetically Soft Ferrites 921
	16.10.2 Magnetically Hard Ferrites 925
16.11	Summary 925
16.12	Definitions 926
16.13	Problems 929

CHAPTER 17

Biological Materials and Biomaterials 934

- **17.1** Introduction 935
- 17.2 Biological Materials: Bone 93617.2.1 Composition 936

	17.2.2 <i>Macrostructure</i> 936
	17.2.3 Mechanical Properties 936
	17.2.4 Biomechanics of Bone Fracture 939
	17.2.5 Viscoelasticity of Bone 939
	17.2.6 Bone Remodeling 940
	17.2.7 A Composite Model of Bone 940
17.3	Biological Materials: Tendons and
	Ligaments 942
	17.3.1 <i>Macrostructure and Composition</i> 942
	17.3.2 Microstructure 942
	17.3.3 Mechanical Properties 943
	17.3.4 <i>Structure-Property Relationship</i> 945
	17.3.5 Constitutive Modeling and
	Viscoelasticity 946
	17.3.6 <i>Ligament and Tendon Injury</i> 948
17.4	Biological Material: Articular
	Cartilage 950
	17.4.1 <i>Composition and Macrostructure</i> 950
	17.4.2 <i>Microstructure</i> 950
	17.4.3 <i>Mechanical Properties</i> 951
	17.4.4 <i>Cartilage Degeneration</i> 952
17.5	Biomaterials: Metals in Biomedical
	Applications 952
	17.5.1 Stainless Steels 954
	17.5.2 Cobalt-Based Alloys 954
	17.5.3 <i>Titanium Alloys</i> 955
	17.5.4 Some Issues in Orthopedic Application of Metals 957
17.6	Polymers in Biomedical Applications 959
	17.6.1 Cardiovascular Applications of
	Polymers 959
	17.6.2 Ophthalmic Applications 960
	17.6.3 Drug Delivery Systems 962
	17.6.4 Suture Materials 962
	17.6.5 Orthopedic Applications 962
17.7	Ceramics in Biomedical Applications 963
	17.7.1 Alumina in Orthopedic Implants 964
	17.7.2 Alumina in Dental Implants 965
	17.7.3 Ceramic Implants and Tissue
	Connectivity 966
	17.7.4 Nanocrystalline Ceramics 967

17.8	Composites in Biomedical Applications 968	
	17.8.1 Orthopedic Applications	968
	17.8.2 Applications in Dentistry	969
17.9	Corrosion in Biomaterials 97	/0

- **17.10** Wear in Biomedical Implants 971
- **17.11** Tissue Engineering 975
- 17.12 Summary 976
- **17.13** Definitions 977
- **17.14** Problems 978

APPENDIX |

Important Properties of Selected Engineering Materials 983

APPENDIX II Some Properties of Selected Elements 1040

A P P E N D I X **III** Ionic Radii of the Elements 1042

APPENDIX IV Glass Transition Temperature and Melting Temperature of Selected Polymers 1044

APPENDIX V Selected Physical Quantities and Their Units 1045

References for Further Study by Chapter 1047

Glossary 1050

Answers 1062

Index 1067

The subject of materials science and engineering is an essential course to engineers and scientists from all disciplines. With advances in science and technology, development of new engineering fields, and changes in the engineering profession, today's engineer must have a deeper, more diverse, and up-to-date knowledge of materials-related issues. At a minimum, all engineering students must have the basic knowledge of the structure, properties, processing, and performance of various classes of engineering materials. This is a crucial first step in the materials selection decisions in everyday rudimentary engineering problems. A more in-depth understanding of the same topics is necessary for designers of complex systems, forensic (materials failure) analysts, and research and development engineers/ scientists.

Accordingly, to prepare materials engineers and scientists of the future, *Foundations of Materials Science and Engineering* is designed to present diverse topics in the field with appropriate breadth and depth. The strength of the book is in its balanced presentation of concepts in science of materials (basic knowledge) and engineering of materials (applied knowledge). The basic and applied concepts are integrated through concise textual explanations, relevant and stimulating imagery, detailed sample problems, electronic supplements, and homework problems. This textbook is therefore suitable for both an introductory course in materials at the sophomore level and a more advanced (junior/senior level) second course in materials science and engineering. Finally, the sixth edition and its supporting resources are designed to address a variety of student learning styles based on the well-known belief that not all students learn in the same manner and with the same tools.

The following improvements have been made to the sixth edition:

- Chapter 1, Introduction to Materials Science and Engineering, has been updated to reflect the most recent available data on the use of various classes of materials in diverse industries. The use of materials in aerospace and automotive industries is discussed in detail. The historical competition among major classes of materials has been discussed in more detail and updated.
- All chapters have been reviewed for accuracy of content, images, and tables. New images representing more recent engineering applications have been included in all chapters. Diffusivity data in Chapter 5 has been updated. The mechanical property discussion in Chapter 6 has been expanded to include modulus of resilience and toughness. The iron-carbon phase diagram in Chapter 9 has been updated and improved. The concept of glass transition temperature has been expanded upon in the discussion of polymers in Chapter 10. The classification of composite materials in Chapter 12 has been expanded and improved. In Chapter 13, the sign convention in reporting the half-cell potentials has been made consistent with IUPAC conventions. The state of the art in microprocessor manufacturing, capability, and design has been updated.

- The end-of-chapter problems have been classified according to the learning/ understanding level expected from the student by the instructor. The classification is based on Bloom's Taxonomy and is intended to help students as well as instructors to set goals and standards for learning objectives. The first group in the classification is the Knowledge and Comprehension Problems. These problems will require students to show learning at the most basic level of recall of information and recognition of facts. Most problems ask the students to perform tasks such as define, describe, list, and name. The second group is the Application and Analysis Problems. In this group, students are required to apply the learned knowledge to the solution of a problem, demonstrate a concept, calculate, and analyze. Finally, the third class of problems is called Synthesis and Evaluation Problems. In this class of problems, the students are required to judge, evaluate, design, develop, estimate, assess, and in general synthesize new understanding based on what they have learned from the chapter. It is worth noting that this classification is not indicative of the level of difficulty, but simply different cognitive levels.
- For most chapters, new problems—mostly in the synthesis and evaluation category—have been developed. These problems are intended to make the students think in a more in-depth and reflective manner. This is an important objective of the authors to help instructors to train engineers and scientists who operate at a higher cognitive domain.
- The instructors' PowerPoint® lectures have been updated according to the changes made to various chapters. These detailed, yet succinct, PowerPoint lectures are highly interactive and contain technical video clips, tutorials for problem solving, and virtual laboratory experiments. The PowerPoint lectures are designed to address a variety of learning styles including innovative, analytic, common sense, and dynamic learners. Not only is this a great presentation tool for the instructor, it creates interest in the student to learn the subject more effectively. We strongly recommend that the instructors for this course view and test these PowerPoint lecture presentations. This could be especially helpful for new instructors.

Additional resources available through the Instructor Resources are interactive quizzing, and step-by-step, real-life processes; animations; and a searchable materials properties database.

ACKNOWLEDGMENTS

The co-author, Javad Hashemi, would like to dedicate his efforts on this textbook to the eternal-loving memory of his parents Seyed-Hashem and Sedigheh; to his wife, mentor, and friend, Eva; to his sons Evan Darius and Jonathon Cyrus; and last but not least to his siblings (thank you for your ceaseless love and support). The authors would like to acknowledge with appreciation the numerous and valuable comments, suggestions, constructive criticisms, and praise from the following evaluators and reviewers:

Gerald Bourne Wendy Dannels Donna Ebenstein Francesco Madaro Sam Mil'shtein Morteza Mohssenzadeh Masoud Naghedolfeizi Margaret Pinnell Ranji Vaidyanathan

Javad Hashemi

A race car is an example of a complex mechanical system that utilizes a variety of materials from all five classes in its structure. For instance, for the race car in the image, the body is made of lightweight carbon fiber composites to save weight, the chassis is made of strong and tough steel alloys, the tires are made of durable volcanized rubber, key components in the engine and brake system are either made of or coated with ceramic materials to withstand high temperature, and a variety of sensors as well as the on-board computer system uses electronic materials. The design and selection of materials for the race car is based on many factors including safety, performance, durability, and cost.

McGraw-Hill Connect[®] is a highly reliable, easyto-use homework and learning management solution that utilizes learning science and awardwinning adaptive tools to improve student results.

Homework and Adaptive Learning

- Connect's assignments help students contextualize what they've learned through application, so they can better understand the material and think critically.
- Connect will create a personalized study path customized to individual student needs through SmartBook[®].
- SmartBook helps students study more efficiently by delivering an interactive reading experience through adaptive highlighting and review.

Over **7 billion questions** have been answered, making McGraw-Hill Education products more intelligent, reliable, and precise.

Connect's Impact on Retention Rates, Pass Rates, and Average Exam Scores

Using **Connect** improves retention rates by **19.8** percentage points, passing rates by **12.7** percentage points, and exam scores by **9.1** percentage points.

> 73% of instructors who use **Connect** require it; instructor satisfaction **increases** by 28% when **Connect** is required.

[©]McGraw-Hill Education

Quality Content and Learning Resources

- Connect content is authored by the world's best subject matter experts, and is available to your class through a simple and intuitive interface.
- The Connect eBook makes it easy for students to access their reading material on smartphones and tablets. They can study on the go and don't need internet access to use the eBook as a reference, with full functionality.
- Multimedia content such as videos, simulations, and games drive student engagement and critical thinking skills.

Robust Analytics and Reporting

- Connect Insight[®] generates easy-to-read reports on individual students, the class as a whole, and on specific assignments.
- The Connect Insight dashboard delivers data on performance, study behavior, and effort. Instructors can quickly identify students who struggle and focus on material that the class has yet to master.
- Connect automatically grades assignments and quizzes, providing easy-to-read reports on individual and class performance.

©Hero Images/Getty Images

			TO DO	2
	David Ochotorena	LATE Acounting week 1 quiz STAT: 12/1 - DUE: 12/4 - ACCOUNTING SECTION 1	PRACTICE	
	To De	LATE CH 02 - Quiz Intermediate START: 12/1 - DUE: 12/10 - PUNTOS SPANISH 101 - SECTION 001	QUIZ	
	Calendar Classes	FRE CLATE Chipter 4 START: 12/1 - DUE: 12/17 - ECONOMICS 101	HOMEWORK	
		Ch 05. En casa: Vocabulario D VE: 12/23 - PUNTOS SPANISH 101 - SECTION 001	LS	
	6J Insight	CH OS States of Consciousness START: 12/12 — DUB: 12/22 - PSYCHOLOGY 101 - SECTION 1A	HOMEWORK	
		Ouiz - Extra Credit START: 12/15 DUE: 12/24 - PSYCHOLOGY 101 - SECTION 1A	QUIZ	
1	connect [.]	EECHARGE Ch 02. En la universidadi Vocabulario DUE: 12/7 - PUNTOS SPANISH 101 - SECTION 001	LS	

More students earn As and Bs when they use Connect.

Trusted Service and Support

- Connect integrates with your LMS to provide single sign-on and automatic syncing of grades. Integration with Blackboard[®], D2L[®], and Canvas also provides automatic syncing of the course calendar and assignment-level linking.
- Connect offers comprehensive service, support, and training throughout every phase of your implementation.
- If you're looking for some guidance on how to use Connect, or want to learn tips and tricks from super users, you can find tutorials as you work. Our Digital Faculty Consultants and Student Ambassadors offer insight into how to achieve the results you want with Connect.

www.mheducation.com/connect

Foundations of Materials Science and Engineering

Introduction to Materials Science and Engineering

(Source: NASA)

(Source: Daniel Casper/NASA)

one of the most exciting proposed NASA missions is the human journey to Mars by the 2030s. The scientific questions that can be answered by actual human presence on Mars are too numerous and very exciting. A convoy of three NASA orbiters and two active rovers are already functioning on and around Mars to gather more information about the Red Planet in order to pave the way for future manned explorations. NASA engineers, together with U.S. aerospace companies such as Lockheed Martin, are putting together the Space Launch System (SLS) rocket that will take the Orion spacecraft on its manned Mars mission. Consider the technologies and the engineering knowledge needed to build the Orion spacecraft and complete such a mission. Following are some of the engineering and materials-related issues considered by NASA and Lockheed Martin in manufacturing the spacecraft.

Pressure testing: The Orion capsule, called the "birdcage," has an underlying welded metallic structure that must contain the atmosphere for the crew during launch, space travel, reentry, and landing. The capsule will provide living space for the astronauts and must withstand the loads sustained during launch and landing. It is crucial that the structure be able to withstand the maximum internal pressurization needed for the journey. What metal would be suitable for the underlying structure? What properties should it have?

Tile bonding: During reentry, the Orion spacecraft will enter Earth's atmosphere at speeds of 25,000 miles per hour and will be exposed to very high temperatures exceeding 5000°F. The "birdcage" of Orion, discussed above, cannot function at such high temperatures and requires a thermal protection system. NASA will use about 1300 ceramic tiles to protect the capsule in addition to a heat shield. Why use ceramic

By the end of this chapter, students will be able to

- 1. Describe the subject of materials science and engineering as a scientific discipline.
- 2. Cite the primary classification of materials.
- **3.** Give distinctive features and charactersitics of each group of materials.
- Name various material from each group. Give some applications of different types of materials.

- 5. Evaluate how much you know and how much you do not know about materials.
- 6. Establish the importance of materials science and engineering in the selection of materials for various applications.

tiles? What properties do they possess that makes them attractive as a thermal protection system? What is the heat shield made of? What characteristics should it have?

Flight systems and subsystems: For Orion to function and communicate, it needs its avionics. This includes electrical power storage and distribution, thermal control systems, cabin pressure monitoring, communication command, data handling, guidance, navigation and controls, propulsion, and computers. The slew of sensors and actuators needed for the these operations require the use of advanced electronics materials. What are the applications of electronics materials in space travel? Why are such materials crucial to the success of the mission?

Vibration tests: The Orion spacecraft will encounter vibrations due to interaction with Earth's atmosphere. It is crucial that the spacecraft be able to withstand such vibrations, and all systems, structural or electronic, must function under extreme conditions. NASA tested the Orion capsule using two electromagnetic shakers and exposed it to vibration frequencies ranging from 5 Mhz to 500 Mhz. What strategies for vibration dampening could be used? What materials would be beneficial for dampening vibration?

These are only some of the questions, tests, and considerations that NASA and Lockheed Martin engineers make in manufacturing of this complex system. Can you think of other issues that need be considered? What is the role of materials science and engineering in answering those questions?

1.1 MATERIALS AND ENGINEERING

Humankind, **materials**, and engineering have evolved over the passage of time and are continuing to do so. All of us live in a world of dynamic change, and materials are no exception. The advancement of civilization has historically depended on the improvement of materials to work with. Prehistoric humans were restricted to naturally accessible materials such as stone, wood, bones, and fur. Over time, they moved from the materials Stone Age into the newer Copper (Bronze) and Iron ages. Note that this advance did not take place uniformly everywhere—we shall see that this is true in nature even down to the microscopic scale. Even today we are restricted to the materials we can obtain from Earth's crust and atmosphere (Table 1.1). According to Webster's dictionary, materials may be defined as substances of which something is composed or made. Although this definition is broad, from an engineering application point of view, it covers almost all relevant situations.

The production and processing of materials into finished goods constitutes a large part of our present economy. Engineers design most manufactured products and the processing systems required for their production. Since products require materials, engineers should be knowledgeable about the internal structure and properties of materials, as well as methods to manufacture components form those materials, so that they can choose the most suitable material for each application and develop the best processing methods.

Research and development engineers create new materials or modify the properties of existing ones. Design engineers use existing, modified, or new materials to design and create new products and systems. Sometimes design engineers have a problem in their design that requires a new material to be created by research scientists and engineers.

For example, NASA engineers designing the supersonic passenger planes (X-planes) (Fig. 1.1) will have to use high-temperature materials that withstand temperatures in excess of 1800°C in the engine environment in order to achieve supersonic airspeeds as high as Mach 12 to 25 (12 to 25 times the speed of sound in air). In addition, these planes must meet the demands of today's society by flying greener (less damaging to the environment and more renewable), safer, and quieter.

Another area that demands the most from materials scientists and engineers is space exploration. The design and construction of the *International Space Station*

Element	Weight Percentage of the Earth's Crust				
Oxygen (O)	46.60				
Silicon (Si)	27.72				
Aluminum (Al)	8.13				
Iron (Fe)	5.00				
Calcium (Ca)	3.63				
Sodium (Na)	2.83				
Potassium (K)	2.70				
Magnesium (Mg)	2.09				
Total	98.70				
Gas	Percent of Dry Air by Volume				
Nitrogen (N ₂)	78.08				
Oxygen (O_2)	20.95				
Argon (Ar)	0.93				
Carbon dioxide (CO_2)	0.03				

 Table 1.1
 The most common elements in planet Earth's crust and atmosphere by weight percentage and volume

Figure 1.1

Nasa's X-plane is in the preliminary design stage and is expected to be built based on Quiet Supersonic Technology (QueSST). The major goals for the new designs are to burn half the fuel, generate 75% less pollution, and be quieter than conventional jets even during supersonic flight.

(Source: NASA)

(ISS) and the *Mars Exploration Rover* (MER) missions are examples of space research and exploration activities that require the absolute best from our materials scientists and engineers. The construction of ISS, a large research laboratory moving at a speed of 27,000 km/h through space, required the selection of materials that would function in an environment far different than ours on Earth (Fig. 1.2). The materials had to be lightweight to minimize payload weight during liftoff. The outer shell had to protect against the impact of tiny meteoroids and human-made debris. The internal air pressure of roughly 15 psi is constantly stressing the modules. Additionally, the modules must withstand the massive stresses at launch. Materials selection for MERs is also a challenge, especially considering that they must survive an environment in which night temperatures could be as low as -96° C. These and other constraints push the limits of material selection in the design of complex systems.

We must remember that materials usage and engineering designs are constantly changing. This change continues to accelerate. No one can accurately predict the long-term advances in material design and usage. In 1943 the prediction was made that successful people in the United States would own their own autogyros (auto-airplanes). How wrong that prediction was! At the same time, the transistor, the integrated circuit, and television (color and high-definition included) were neglected. Thirty years ago, many

people would not have believed that someday computers would become a common household item similar to a telephone or a refrigerator. And today, we still find it hard to believe that someday space travel will be commercialized, and we may even colonize Mars. Nevertheless, science and engineering push and transform our most unachievable dreams to reality.

The search for new advanced materials goes on continuously. The industries that benefit heavily from new advances in materials science and engineering and require a tremendous number of materials experts in their daily operations are aerospace, automotive, biomaterials, chemical, electronics, energy, metals, and telecommunications. The focus on certain materials differs significantly between industries. For instance, in aerospace and automobile industries, the focus is mainly structural and is on airframe and engine materials. In biomaterials industries, the focus is on materials that are biocompatible (can survive in the human body) and also on synthesizing biological materials and components. In the chemical industries, the focus is on traditional chemicals, polymers, and advanced ceramics. In the electronics industries, material used in computers and commercial electronics takes center stage. In the energy industry, materials used in extraction of both fossil-based and renewable energy are the focus. Each industry also seeks different characteristics in their materials. These characteristics and the needs in the respective industries are presented in Table 1.2.

Industry								
Desired Characteristics	Aerospace	Automotive	Biomaterials	Chemical	Electrical	Energy	Metals	Telecommunication
Light and strong	1	\checkmark	1					
High temperature resistance	1			\checkmark		\checkmark	\checkmark	
Corrosion resistance	1	\checkmark	1	\checkmark		\checkmark	1	
Rapid switching					\checkmark	\checkmark		\checkmark
Efficient processing	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark
Near net shape forming	1	\checkmark	\checkmark	\checkmark	\checkmark	1	1	\checkmark
Recycling		1		\checkmark			\checkmark	
Prediction of service life	1	\checkmark	\checkmark	\checkmark	\checkmark	1		\checkmark
Prediction of physical properties	1	\checkmark						
Materials data base	\checkmark	\checkmark	\checkmark	1	\checkmark	1	\checkmark	\checkmark

Table 1.2 Use of advanced materials in selected industries and their desired characteristics.

Source: National Academy of Sciences.

More recently, the field of nanomaterials has attracted a great deal of attention from scientists and engineers all over the world. Novel structural, chemical, and mechanical properties of nanomaterials have opened new and exciting possibilities in the application of these materials to a variety of engineering and medical problems. These are only a few examples of the search by engineers and scientists for new and improved materials and processes for a multitude of applications. In many cases, what was impossible yesterday is a reality today!

Engineers in all disciplines should have some basic and applied knowledge of engineering materials so that they will be able to do their work more effectively when using them. The purpose of this book is to serve as an introduction to the internal structure, properties, processing, and applications of engineering materials. Because of the enormous amount of information available about engineering materials and due to the limitations of this book, the presentation has had to be selective.

1.2 MATERIALS SCIENCE AND ENGINEERING

Materials science is primarily concerned with the search for basic knowledge about the internal structure, properties, and processing of materials. **Materials engineering** is mainly concerned with the use of fundamental and applied knowledge of materials so that the materials can be converted into products needed or desired by society. The term *materials science and engineering* combines both materials science and materials engineering and is the subject of this book. Materials science is at the basic knowledge end of the materials knowledge spectrum, and materials engineering is at the applied knowledge end, and there is no demarcation line between the two (Fig. 1.3).

Figure 1.3

Materials knowledge spectrum. Using the combined knowledge of materials from materials science and materials engineering enables engineers to convert materials into the products needed by society.

Figure 1.4 shows a three-ringed diagram that indicates the relationship among the basic sciences (and mathematics), materials science and engineering, and the other engineering disciplines. The basic sciences are located within the inner ring or core of the diagram, while the various engineering disciplines (mechanical, electrical, civil, chemical, etc.) are located in the outermost third ring. The applied sciences, metal-lurgy, ceramics, and polymer science are located in the middle ring. Materials science

and engineering is shown to form a bridge of materials knowledge from the basic sciences (and mathematics) to the engineering disciplines.

1.3 TYPES OF MATERIALS

For convenience most engineering materials are divided into *three* main or fundamental classes: **metallic materials, polymeric materials,** and **ceramic materials.** In this chapter we shall distinguish among them on the basis of some of their important mechanical, electrical, and physical properties. In subsequent chapters, we shall study the internal structural differences among these types of materials. In addition to the three main classes of materials, we shall consider two processing or applicational classes, **composite materials** and **electronic materials**, because of their great engineering importance.

1.3.1 Metallic Materials

These materials are inorganic substances that are composed of one or more metallic elements and may also contain some nonmetallic elements. Examples of metallic elements are iron, copper, aluminum, nickel, and titanium. Nonmetallic elements such as carbon, nitrogen, and oxygen may also be contained in metallic materials. Metals have a crystalline structure in which the atoms are arranged in an orderly manner. Metals in general are good thermal and electrical conductors. Many metals are relatively strong and ductile at room temperature, and many maintain good strength even at high temperatures.

Metals and alloys¹ are commonly divided into two classes: **ferrous metals and alloys** that contain a large percentage of iron such as the steels and cast irons and **nonferrous metals and alloys** that do not contain iron or contain only a relatively small amount of iron. Examples of nonferrous metals are aluminum, copper, zinc, titanium, and nickel. The distinction between ferrous and nonferrous alloys is made because of the significantly higher usage and production of steels and cast irons when compared to other alloys.

Metals in their alloyed and pure forms are used in many industries, including aerospace, biomedical, semiconductor, electronic, energy, civil structural, and transport. The U.S. production of basic metals such as aluminum, copper, zinc, and magnesium is expected to follow the U.S. economy fairly closely. For instance, in the United States alone, the primary metal product manufacturing industry distributed approximately \$280 billion worth of products in 2014. The production of iron and steel (41% of the total primary metal distributed) has been steady considering global competition and the always-important economic reasons.

Materials scientists and engineers are constantly trying to improve the properties of existing alloys and to design and produce new alloys with improved strength, high-temperature strength, creep (see Sec. 7.4), and fatigue (see Sec. 7.2) properties. The existing alloys may be improved by better chemistry, composition control, and

¹ A metal alloy is a combination of two or more metals or a metal (metals) and a nonmetal (nonmetals).